1. A triangle is formed on the geoboard with a rubber band.

(a) How many different translations of the triangle are possible (including the original triangle)? The entire triangle must remain on the geoboard.
(b) Describe a sequence of horizontal and vertical translations that move the triangle so that the middle peg is in the center of the triangle. Draw the translated triangle on the above geoboard. Is it possible to rotate the triangle so that the middle peg is in the center of the triangle? If so, specify the center of rotation and the angle of rotation?
(c) Let the middle peg be the center of dilation and dilate the translated triangle from part (b) with a scale factor of 2 . Draw the dilated triangle on the geoboard.
(d) How does the perimeter of the original triangle compare with the perimeter of the of the dilated triangle? How does the area of the original triangle compare with the area of the dilated triangle?
2. Use a straightedge and compass to find the center of rotation of the following figure:

3. Does this figure have rotational symmetry? If so, find the angle(s) of rotation that produce an image that fits exactly on the original figure.

4. Identify 4 letters of the alphabet (capitalized) that are the same when reflected over a horizontal line. Identify 4 letters of the alphabet (capitalized) that are the same when reflected over a vertical line.
5. Describe the type of symmetry, if any, that the following objects have:

6. Use a straightedge and compass to perform each of the following constructions. Justify your technique.
(a) Construct a copy of the line.

(b) Construct the perpendicular bisector of the line.

(c) Construct an equilateral triangle whose sides have the same length as the line below.

7. A student has a piece of paper in the shape of an isosceles triangle with angles of $75^{\circ}, 75^{\circ}$, and 30°. To divide the paper into two equal parts, the student cuts down the middle of the 30° angle to the middle of the opposite side. The student says that the two pieces are congruent. Is the student correct? Explain.
8. Find the line of reflection for the following figures:

9. Determine whether the two triangles are similar. Explain your reasoning. Write the similarity statement for the triangles, if possible.

10. Follow the procedure to construct the line perpendicular to line n through point S using only a compass and a straight edge.

(a) Draw an arc with center S that intersects n at two different points. Label these intersections as X and Y.
(b) Set the radius of the compass so that is is greater than the length of $\overline{X S}$. Draw an arc with center at X above n.
(c) Using the same radius as in Step (b), draw an arc with center at Y above n.
(d) Draw the line that passes through S and the intersections of the arcs above n.

Justify this technique.
11. Determine whether each of the following statements is true or false. Justify your response.
(a) All right triangles with a hypotenuse of 10 units are congruent.
(b) All right triangles with a hypotenuse of 10 units are similar.
(c) A square with side lengths of 2 meters is similar to a rectangle with side lengths of 2 meters and 2 centimeters.
(d) If $\angle A \cong \angle S, \angle C \cong \angle T$, and $E A \cong V S$, then $\triangle A C E \cong \triangle S T V$.
(e) All isosceles triangles are similar.
(f) If a pentagon has a line of symmetry, then it is a regular pentagon.
(g) Rotating a triangle by 180° around the midpoint of its base is the same transformation as reflecting it across its base.
(h) Any two similar quadrilaterals can be transformed into each other with a dilation.
12. A woman stands 40 feet from a street light and notices that her shadow cast by the street light is 8 feet long. She is 5 feet tall.
(a) Draw a diagram illustrating this scenario with all distances clearly labeled.
(b) Find two similar triangles in your diagram above and justify why they are similar.
(c) How tall is the street light?
13. When opposite angles of a quadrilateral are congruent, the quadrilateral is a parallelogram. In the figure, $\triangle E F H \cong \triangle G H F$. Determine whether quadrilateral $E F G H$ is a parallelogram.

14. (a) Determine the location of the image of the trapezoid after it is reflected across line l and its reflection image is then reflected across line m.
(b) Determine the location of the image of the trapezoid if it is first reflected across line m and then reflected across line l.

